
1.  Introduction
Precipitable Water Vapor (PWV) is one of the most important greenhouse gases that absorbs the most so-
lar radiation (e.g., Kiehl & Trenberth, 1997). It plays a key role in the hydrological cycle with fundamen-
tal impacts on the Earth's climate. Good knowledge of PWV is crucial for meteorological forecasting for 
extreme hydro-meteorological events (e.g., Millán, 2014), fog occurrences (e.g., Veljović & Vujović, 2019), 
global lightning activities (e.g., Price, 2000) and tornado-produced storms (e.g., Georgiev, 2003). The spa-
tial-temporal variability of PWV also leads to the changes in the tropospheric delay, which is known to be 
a common error source in geodetic observations including Global Positioning System (GPS) (e.g., Iwabuchi 
et al., 2003), Interferometric Synthetic Aperture Radar (InSAR) (e.g., Yip et al., 2019), Very Long Baseline 
Interferometry (VLBI) (e.g., Eriksson et al., 2014), and satellite altimetry (e.g., Obligis et al., 2011). Such ef-
fects prevent InSAR from measuring small magnitude or long wavelength geophysical deformation signals, 
for instance those resulting from inter-seismic strain accumulation and post-seismic strain relaxation which 
not only provide insight into the mechanics of faulting systems but also the possibility of future seismic 
hazards (e.g., Daout et al., 2019; Jolivet et al., 2013). As a result, mitigation of the tropospheric effect has be-
coming increasingly challenging in recent (e.g., Sentinel-1 and Gaofen-3) and future InSAR missions (e.g., 
GEOSAR and NISAR, which are due to operate in the next 3–10 years) owing to their unprecedented spatial 
coverage and temporal resolution of the measurement. Such effects can also degrade the GPS positioning 
accuracy notably in the network Real Time Kinematic mode due to their impacts on the estimation of trop-
ospheric delay corrections used by users in order to achieve instantaneous cm-level positioning accuracy 
(G. R. Hu et al., 2003). This is necessitated by applications such as rapid earthquake source determination 
and tsunami early warning (e.g., Mori et al., 2011), volcanic monitoring (e.g., Zahorec et al., 2018), costal 
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erosion (e.g., Esposito et al., 2018), landslide monitoring (e.g., Barbarella et al., 2018), railway construction 
(e.g., Stallo et al., 2018), and intelligent transport systems (e.g., Meng et al., 2018).

Currently, measurements of PWV are often obtained from ground to satellite based sensors, including ra-
diosondes, GPS, Moderate Resolution Imaging Spectrometer (MODIS) on board NASA's Terra and Aqua 
satellites, as well as numerical weather models (Bevis, 1994; Gao & Kaufman, 2003; Jolivet et al., 2011; 
Yu et al., 2018). From a geodetic point of view, these products differ in their spatial-temporal resolutions, 
data availability, and uncertainties. The radiosonde is a telemetry instrument carried into the atmosphere 
usually by a weather balloon, resulting a vertical profile of various atmospheric parameters. It provides 
global coverage but at discrete stations so that low in spatial-temporal resolutions (daily or twice daily) 
owing to the high costs associated with launching radiosonde (Durre et al., 2018). MODIS provides glob-
al coverage observations in 36 spectral bands, among which five near-infrared bands are used to calcu-
late ∼1 km spatial resolution PWV over clear land areas of the globe. Despite its dense spatial resolution, 
MODIS has only a daily sampling rate and observations are only available under cloud-free conditions 
and is claimed to be determined with an accuracy of 5%–10% (Gao & Kaufman, 2003). GPS retrieves the 
pointwise Zenith Tropospheric Delay (ZTD), which can be used to obtain PWV using surface pressure and 
temperature (Bevis, 1994), at each ground station by combining satellite range and/or phase observations 
at different incidence angles with minutes to hours temporal resolutions depending on its sampling rate 
(Ahmed et al., 2016). However, the distribution and the density of GPS stations, usually installed around 
urban areas, may limit its usage in the determination of continuous 2D ZTD/PWV fields. Previous studies 
have reported inconsistent and different PWV Root Mean Square (RMS) differences. Comparisons between 
GPS and MODIS PWV products showed that MODIS PWV appeared to overestimate water vapor compared 
to GPS values with a scale factor of about 1.05 and MODIS and GPS water vapor products agreed to within 
1.6 mm in terms of standard deviations (Li et al., 2005, 2009). Liu et al.  (2013) reported a 1.3 mm RMS 
between radiosonde and MODIS PWV over Hong Kong. Gurbuz and Jin (2017) showed 5.0 mm RMS dif-
ferences between GPS and MODIS over Turkey. Prasad and Singh (2009) showed a 7.8 mm RMS difference 
between GPS and MODIS PWV over India but Li et al. (2003) showed a 1.7 mm standard deviation of the 
differences over Germany. These inconsistences arose as most of these studies were conducted in a local 
region or on discrete points, but the water vapor quality derived from different techniques may vary both 
spatially and temporally.

Numerical weather models use mathematical models of the atmosphere combined with current meteoro-
logical observations to provide predictions on atmospheric variables which are in turn used to predict the 
future weather states, such as the Weather Research and Forecasting (WRF) model, the European Centre 
for Medium-Range Weather Forecasts (ECMWF) and many other global and regional weather models run 
by local meteorological departments. These models are constantly updated based on new observations or 
improved mathematical models, for example, on March 8, 2016, ECMWF improved the spatial resolution of 
its High RESolution (HRES) atmospheric analysis model to ∼9 km from ∼16 km with a 6-h temporal reso-
lution, and from early 2019, ECMWF started to publish the fifth generation reanalysis model (ERA5) with 
1-h temporal and ∼25 km spatial resolutions (the entire ERA5 data set from 1950 to present should gradu-
ally become available before the end of 2020), which is a replacement of the previous ERA-Interim model 
(6-h temporal and ∼75 km spatial resolutions, expired on August 31, 2019). Given these spatially regular 
and temporally continuous resolutions, and global availability, the weather model derived PWV has been 
extensively used not only in meteorology (e.g., Lin et al., 2016) but also in geodesy and geophysics, notably 
the mitigation of the atmospheric error in geodetic observations such as InSAR (e.g., Jolivet et al., 2014), 
GPS (e.g., Zhu et al., 2018), and VLBI (e.g., Boehm & Schuh, 2007). However, prior to the utilization of these 
state-of-art weather models, it is necessary and urgent to evaluate its accuracy in order to understand and 
quantify the uncertainty that may be introduced to the users' applications, which is therefore addressed in 
this study.

Previous studies have used GPS to validate ERA-Interim and showed a mean difference of 1.1 cm and a 
RMS difference of 2.4 cm between GPS and ERA-Interim ZTDs over China (Chen et al., 2011), and less than 
0.4 cm differences between ERA-Interim and GPS PWV over North America (Bordi et al., 2016). As for the 
new weather models, Cliffe Ssenyunzi et al. (2020) reported a 0.17 cm RMS difference between ERA5 and 
GPS PWV on 13 GPS stations over eastern Africa and Jiang et al. (2020) reported a 0.3 cm mean difference 
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and a 1.15 cm RMS difference between ERA5 and GPS ZTDs over China. However, there is a lack of studies 
about validation of the HRES ECWMF product, despite its reported successful usages such as in InSAR 
atmospheric correction (e.g., Anantrasirichai et al., 2019; Z. Hu & Mallorquí, 2019; Murray et al., 2019; Yu 
et al., 2018). Furthermore, previous validations of the new ERA5 product have focused mainly on regional 
scales and on a pointwise basis, and, most importantly, the spatial-temporal variability of its comparison 
statistics was not investigated, despite the fact the weather models' performances may have a heterogeneous 
global distribution. As a result, in this study, we seek to validate HRES and ERA5 using ∼13, 000 globally 
distributed GPS stations and the 1-km global MODIS PWV maps. Their agreements, and the spatial-tempo-
ral variability of the agreements, are investigated globally every 1 h from January 2016 to December 2018, 
providing a comprehensive understanding of the weather model PWV uncertainty and a general reference 
for users utilizing their products.

2.  Data and Method
A variety of datasets were used in this study, including the ground-based GPS ZTD estimates, space-based 
MODIS PWV observations and the ECMWF weather model outputs. Specifically, we aim to compare the 
two different ECMWF weather models against GPS ZTDs and MODIS PWV on a global scale from Janu-
ary 2016 to December 2018 in order to investigate, if any, systematic and stochastic disagreements among 
them. GPS provides high accuracy ZTD estimates which is often used to validate weather models (e.g., 
Chen et al., 2011) and its high temporal resolution plays a key role in evaluating the temporal variability of 
the weather model product. MODIS provides high spatial resolution PWV observations which is especially 
valuable in evaluating the spatial variability of water vapor (e.g., Li et al., 2003).

2.1.  Whether Models (HRES and ERA5)

HRES is an operational ECMWF climate analysis model which combines short-range forecast data with 
observations to produce the best fit to both. It provides a large number of atmospheric, land and oceanic 
climate variables every 6 h with a spatial resolution of ∼10 km and in near real-time (with a 5–10 h delay, 
https://www.ecmwf.int/en/forecasts/datasets/set-i).

ERA5 is a new ECMWF climate reanalysis model which replaces ERA-Interim (stopped being produced 
on August 31, 2019) and provides a numerical description of the recent climate by combining models with 
observations. It provides hourly estimates of climate variables at a spatial resolution of ∼25 km. Quality-as-
sured monthly updates of ERA5 are published with a 3-month delay. Preliminary daily updates of the data 
set are available to users with a 5-day delay.

Apart from their differences in spatial-temporal resolutions, with ERA5 having a higher temporal resolu-
tion and a lower spatial resolution than HRES, ERA5 utilizes the Integrated Forecasting System (IFS) Cycle 
41r2 with several added features specifically developed for reanalysis throughout the data period, whilst 
HRES-ECMWF uses continually updated IFSes which changed from Cycle 41r1 to Cycle 41r2 since March 
2016, to Cycle 43r1 since November 2016, to Cycle 43r3 since July 2017 and to Cycle 45r1 since June 2018 
(https://www.ecmwf.int/en/publications/ifs-documentation). Furthermore, the two products use slightly 
different satellite and in situ observations.

For each 10-km grid for HRES and 25-km grid for ERA5, the surface pressure and 137 vertical levels of 
temperature and specific humidity variables were used to calculate its ZTD and PWV as described in Jolivet 
et al. (2011). In this study, global HRES (10-km of every 6 h) and ERA5 (25-km of every 1 h) ZTD and PWV 
maps from January 1, 2016 to December 31, 2018 were used.

2.2.  GPS ZTD Product

We used globally distributed ∼13,000 GPS stations (Figure 1). The 5-min ZTD time series at each station was 
estimated by GipsyX using JPL final GPS orbit and clock solutions at Nevada Geodetic Laboratory, Univer-
sity of Nevada (Blewitt et al., 2016). The ZTD and its horizontal gradients were estimated as random walk 
with process noises of 5.0d–8 km/sqrt(sec) and 5.0e−9 km/sqrt(sec), respectively. A full description of the 
GPS data processing strategy can be found at http://geodesy.unr.edu/gps/ngl.acn.txt.
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We did not include the GPS PWV product, given the fact that it is retrieved first by separating the wet de-
lay component from the hydrostatic delay component using surface pressure over or near the GPS station 
(e.g., Elgered et al., 1991), and then by approximating the weighted mean temperature (Tm, the average 
temperature of atmosphere weighted by the pressure of water vapor) to covert the wet delay to PWV (Bevis 
et al., 1992). Note that Tm should be dependent not only on surface temperature, but also on the tropospher-
ic temperature profile and the vertical distribution of humidity (Davis et al., 1985), and an empirically de-
rived linear regression might lead to additional uncertainties in the PWV estimate (e.g., Webley et al., 2002). 
Furthermore, atmospheric corrections for geodetic observations including GNSS, InSAR, VLBI and satellite 
altimetry as mentioned in the Introduction section require ZTD, rather than PWV, since the hydrostatic 
delay component also plays an important role (e.g., Jolivet et al., 2014).
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Figure 1.  ZTD comparisons between ERA5 and GPS (a) and between HRES and GPS (b) using hourly data from 
January 2016 to December 2018. (a1 and b1) are the mean difference of each station. (a2 and b2) are the DSTD of each 
station. (c1) is the difference between (a1) and (b1). (c2) is the difference between (a2 and b2). (d1 and d2) are the 
histogram of the ZTD differences for ERA5 and HRES in (a1 and b1), respectively. GPS, Global Positioning System; 
HRES, High RESolution; ZTD, Zenith Tropospheric Delay.
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2.3.  MODIS PWV Product

We used the near-infrared Level-2 MODIS PWV product which are generated at ∼1 km spatial resolution 
using the near-infrared algorithm during the day. The algorithm estimates the water vapor from the trans-
mittance, based on theoretical radiative transfer calculations and a look-up-table procedure, with an accu-
racy of 5%–10%, but the errors will be greater for retrievals from data collected over dark surfaces or under 
hazy conditions (Gao & Kaufman, 2003). In order to minimize (if not avoid) the uncertainty in MODIS PWV 
due to the presence of clouds, we used the level-2 MODIS cloud product to mask out the cloudy pixels so 
that only clear pixels with a confidence level of greater than 99% as defined in Frey et al. (2008) were used. 
The elevation of each MODIS PWV pixel was interpolated from the 30 m Shuttle Radar Topography Mission 
(SRTM) global Digital Elevation Model (DEM) for the region between latitude −60° to 60° (Farr et al., 2007) 
and from the 30 m Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) global 
DEM for the regions between latitude 60°–83° and −60° to −83° (Team, 2011).

2.4.  Methods and Statistics Used

To compare the two weather models against GPS and MODIS, we spatially interpolated respectively the 
ERA5 and HRES ZTDs onto each GPS station as well as PWV onto each cloud free MODIS pixel based 
on the Iterative Tropospheric Decomposition (ITD) interpolator (Yu et al., 2017), with the correspondent 
ZTD and PWV differences calculated. We also linearly interpolated HRES from 6 to 1-h to comply with the 
temporal resolution of ERA5 and, most importantly, to assess fully the impact of the spatial-temporal res-
olutions on the weather models. In this way, all the comparisons in this paper were implemented at every 
hour between 2016 and 2018.

Throughout this study, we used the differences between products and the Difference STandard Deviation 
(DSTD) to statistically describe the quality of the weather models relative to GPS and MODIS. We also 
showed the spatial distribution and time series of the DSTD to investigate the stability and spatial-temporal 
variability of the agreements between the weather models and GPS/MODIS.

3.  ZTD Comparisons Between Weather Models and GPS
Figure 1 shows the 3-year mean differences and DSTDs respectively between ERA5 and GPS and between 
HRES and GPS of each station from January 2016 to December 2018. Notable overestimating of ZTDs for 
both of the two weather models can be observed in a range of regions such as in Europe, Japan, Australia, 
and Africa. Regions with dense GPS stations also denoted spatially variant mean differences, with differ-
ences in Northwestern Europe being smaller than southwestern Europe, differences in Northeastern Aus-
tralia (including New Zealand) being greater than southwestern Australia and differences in western South 
America being greater than the east. Stations in North America have the smallest differences compared to 
the other regions, with its western stations being greater than the eastern stations. Overall, the HRES global 
mean difference (0.43 cm) is smaller than the ERA5 counterpart (0.49 cm) as shown in Figure 1c1, par-
ticularly in western North America and central Europe. However, HRES has larger differences than ERA5 
in regions such as New Zealand and Italy. Fifty-seven and two tenths percentage stations have an absolute 
difference of less than 1 cm for ERA5 but 58.5% stations for HRES. The difference between ERA5 and HRES 
mainly occurred in regions of western North America, Southern Europe, Japan, Nepal, and New Zealand 
as shown in Figure 1c1.

The DSTD of each station is shown in Figures 1a2 and 1b2 where considerable spatial variability is ob-
served. Although large differences (2–3 cm) are found on various regions such as Europe, Japan, and Aus-
tralia, their DSTDs are small (1–2 cm), implying the differences between weather models and GPS here are 
generally stable and behave largely as constants. These constant shifts could be introduced by the estima-
tion of an optimal initial state of the atmosphere for the numerical forecast (Gutman & Benjamin, 2001). 
However, they are less concerned by applications in which only relative ZTDs are used such as the miti-
gation of InSAR tropospheric errors. Eastern North America has greater DSTDs than the west, which is 
also observed in the comparisons with MODIS in Section 4, and the east coast of North America including 
Florida has the greatest DSTD (>3.0 cm). This may due to their different climate systems, resulting the east 
coast of North America holding more water vapor (Vonder Haar et al., 2012) and more humid (Gaffen & 
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Ross, 1999) than the west throughout the year, especially in Florida which was hit by more storms than any 
other U.S. state. The DSTD shows a certain degree of latitude dependency in regions such as Japan and east 
of Australia as stations far away from the equator tend to have less water vapor so that smaller DSTDs. This 
will be discussed further in Section 5.2. The global mean DSTDs respectively for ERA5 and HRES are 1.69 
and 1.54 cm. HRES has a lower DSTD than ERA5 on 55.7% of the stations. Only 51.7% stations have a DSTD 
of less than 1 cm for the ERA5 comparison, compared to 56.1% for the HRES comparison.

In order to validate the weather models temporally, we divided the globe into 14 regions as shown in Fig-
ure 1a1 approximately according to their climatic features, the mean ZTD difference distribution, the DSTD 
distribution and the coverage of GPS stations. For each region, we calculated its DSTD time series between 
weather models and GPS of all the stations within that region every 1 h as shown in Figure 2. These DSTD 
time series show considerable seasonal variations which peak in summer (June to August for the Northern 
hemisphere and December to February for the Southern hemisphere) and drop in winter and coincide with 
the seasonal variation of water vapor. This implies the weather models agree worse with GPS in summer 
than that in winter. Since the tropospheric delay has more substantial seasonal variations in temperate 
latitudes compared to Equatorial (all year high) and Polar (all year low) regions mainly due to the variation 
of water vapor (Chelton et al., 1981), the DSTD variation in temperate latitudes are generally greater than 
that in Equatorial and Polar regions, with Japan having the greatest (∼1.5 cm peak-to-valley). Apart from 
the seasonal variation, the fluctuation of the DSTD time series is the greatest in Southeast Asia, owing to 
the high amount of water vapor, hence large tropospheric delays, of the stations close to the equator. Sta-
tions in Arctic, however, have the smallest DSTD fluctuation due to its small water vapor amount and dry 
atmosphere. Overall, most of the (HRES DSTD–ERA5 DSTD) values are negative, implying that HRES has 
a better agreement with GPS than ERA5, particularly in Antarctica (1.97 cm for ERA5 compared to 1.04 cm 
for HRES) and Africa (2.06 cm for ERA5 compared to 1.26 cm for HRES). However, ERA5 performs slight-
ly better than HRES in eastern North America (1.15 cm for ERA5 compared to 1.21 cm for HRES). Their 
different performances could be caused by the different spatial-temporal resolutions and the forecasting 
algorithms utilized as described in Section 2.1.
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Figure 2.  Hourly ZTD DSTD time series respectively between ERA5 and GPS (red) and between HRES and GPS (yellow) per region as defined in Figure 1a1 
(a1–a14) and for the globe (a15) from January 2016 to December 2018. The black solid lines denote the correspondent time series of (HRES DSTD–ERA5 
DSTD). The numbers in the bracket show the 3 year mean DSTDs sequentially for ERA5 and HRES (unit in cm). GPS, Global Positioning System; HRES, High 
RESolution; ZTD, Zenith Tropospheric Delay.
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Since GPS provides ZTD estimates every 5 min, it is possible to test whether the performance of HRES 
could retain on each hour throughout the day compared with the hourly sampled ERA5 ZTD, provided that 
the 1-h HRES ZTD is linearly interpolated from the original 6 h sampling rate. For each hour of the day, 
we calculated the DSTD per region based on all the stations in that region within 3 years for the summer 
(Figure 3a) and winter (Figure 3b) periods, respectively. A similar pattern is found as in Figure 2 that HRES 
outperforms ERA5 in most of the regions by having a lower DSTD, particularly in Antarctica and Africa 
where the mean ERA5 DSTD is about twice of the HRES DSTD. The DSTD is generally higher and has more 
diurnal variation in summer than that in winter, as observed in western North America, South America, 
Europe, Japan, Australia, and New Zealand. On average, the HRES DSTD at 0, 6, 12, and 18 o'clock have not 
substantially outperformed the other hours, suggesting that the temporally linear interpolation of the HRES 
ZTD has largely retained its performance. However, in regions such as eastern North America, Western and 
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Figure 3.  ZTD DSTDs per region between the weather models and GPS for each hour of the day averaged of the summer period (June to August for the North 
Hemisphere and December to February for the South Hemisphere) and winter period (December to February for the North Hemisphere and June to August 
for the South Hemisphere), respectively. The numbers in the bracket show the mean DSTDs sequentially for ERA5 and HRES (unit in cm). DSTD, Difference 
STandard Deviation; GPS, Global Positioning System; HRES, High RESolution; ZTD, Zenith Tropospheric Delay.



Earth and Space Science

Eastern Europe, and Japan, there are indeed variations showing HRES having larger DSTDs on 3, 9, 15, and 
21 o'clock than the original HRES sampling hours which are not observed on ERA5. This effect is also found 
to be greater in winter than in summer which is probably due to the fact that the weather models perform 
better in winter (i.e., low DSTDs), leaving the temporal interpolation error of HRES more dominant. Where-
as in summer, other error sources introduced by the high amount of water vapor and its variation may, to 
some extent, mask the effect caused by the temporal interpolation. The high temporal resolution of ERA5 is 
superior in maintaining a constant performance throughout the day and crucial in events of rapid changing 
atmosphere, which will be discussed further in Section 5.3.

4.  PWV Comparisons Between Weather Models and MODIS
In this section, we spatially interpolated the hourly ERA5 and HRES PWV onto all the cloud free MODIS 
pixels at each hour of the day from January 2016 to December 2018. To calculate and display the results con-
sidering the irregular distribution of the MODIS pixel, we defined a uniform 0.05° grid (∼5 km), containing 
∼5 original MODIS pixels. For each grid, we calculated the mean PWV difference and DSTD of all the pixels 
located in that grid within 3 years and plotted in Figure 4. Note that due to the ice cover over Antarctic 
deteriorating the quality of MODIS PWV (Gao & Kaufman, 2003), this region was excluded in this section. 
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Figure 4.  PWV comparisons between the two weather models and MODIS. (a1 and b1) are respectively the mean of (ERA5—MODIS) and (HRES—MODIS) 
PWV of each 5-km grid from January 2016 to December 2018, with (a2) and (b2) denoting the correspondent DSTD of each grid. (c1) is the difference between 
(a1 and b1). (c2) is the difference between (a2 and b2). The statistics shown were calculated excluding the pixels over Antarctica. DSTD, Difference STandard 
Deviation; HRES, High RESolution; ZTD, Zenith Tropospheric Delay.
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Overall, MODIS tended to overestimate PWV compared to the weather models, with their mean differences 
being −0.33 and −0.32 cm for ERA5 and HRES, respectively. The overestimation is also found in previous 
researches when comparing MODIS to GPS (e.g., Prasad & Singh, 2009; Vaquero-Martínez et al., 2017). 
Fifty five and one tenth percentage of the grids of ERA5 differ from MODIS by less than 0.3 cm, compared 
to 55.3% of the grids of HRES. The DSTD maps show that the weather models agree worse with MODIS in 
southeast of North America (also observed in Figure 1 when comparing with GPS), central Africa, southeast 
of Asia and northwest of Australia than the other regions. The global mean DSTDs are 0.34 and 0.32 cm 
for ERA5 and HRES, respectively. On average, HRES outperforms ERA5 despite of its lower temporal res-
olution and 75% (18 h out of 24) temporally interpolated values. 49.9% of the grids of ERA5 have a DSTD 
of less than 0.3 cm, compared to 51.3% of HRES. HRES differs from ERA5 the most in central Africa and 
South America, with ERA5 having relatively larger (absolute values) PWV differences against MODIS in 
South America and smaller PWV differences against MODIS in central Africa. The HRES DSTD differs from 
ERA5 the most in the coast of the Gulf of Guinea, Africa, with the ERA5 DSTD being larger than HRES by 
more than 0.1 cm. The higher resolution of HRES than ERA5 is beneficial in the Gulf of Guinea due to its 
extreme weather conditions and rainfalls, which plays a key role in the inter-annual variability of the West 
African monsoon (Joly & Voldoire, 2010).

Noticing the spatial variability of the PWV DSTD in Figure 4, it is necessary to evaluate them individually 
in different regions and also temporally through the DSTD time series, as have done in Section 3. We used 
the same regions defined in Figure 1a1 and plotted the daily (as MODIS PWV is sampled daily) PWV DSTD 
time series in Figure 5. Since MODIS PWV is acquired approximately at the same time per day in each 
region (e.g., ∼10:30 local time around the equator), we also showed in Figure 5c the MODIS acquisition 
time for each 5-km grid computed by averaging the acquisition time within 3 years. Note that although we 
plotted here the DSTD time series of Antarctica, the global DSTD time series were calculated excluding this 
region due to its problematic quality of MODIS PWV. Similar seasonal variations compared to Figure 2 are 
observed and the variation amplitude reaches 4–5 mm in North America, Arctic and Asia. The two weather 
models generally perform better (DSTD < 0.3 cm) in western and eastern North America, Arctic, Europe, 
Japan, New Zealand, and Asia. HRES has smaller DSTDs than ERA5 in 79% of the 14 regions but performs 
similarly with ERA5 in eastern North America. Central America and Southeast Asia have relatively the 
largest performance differences (0.03 cm) between ERA5 and HRES. The HRES DSTD is more stable than 
that of ERA5, with the later having frequently large DSTD jumps, as observed in Western Europe, Japan and 
Southeast Asia (Figure 5). Although HRES PWV is temporally interpolated from 6 to 1-h, there is no sub-
stantial performance degradation at the interpolated hours. For example, observations in Australia, Asia, 
Western Europe, South America, and Western North America were mostly acquired at non HRES sampling 
hours but the HRES DSTDs in these regions are smaller or similar compared with ERA5. However, under 
extreme weather conditions, one may also benefit from the high temporal resolution of ERA5 which will be 
further discussed in Section 5.3.

5.  Discussion
We have shown that the performances of the two weather models validated by GPS and MODIS vary from 
place to place and over time. In this section, we will statistically investigate their performance dependencies 
on the elevation and the magnitude of ZTD/PWV.

5.1.  Elevation Dependency

Considering the elevation dependency is important in a way that water vapor is strongly correlated with the 
elevation and highly variable around mountainous terrain due to complex patterns of air flow associated 
with high reliefs (Webb et al., 2020). We plotted in Figure 6 the DSTD per station against the elevation for 
each region defined in Figure 1a1 using the 3 year data. It is clear that DSTDs are generally inversely cor-
related with the elevation as expected, since high-altitude stations tend to have smaller ZTDs than low-alti-
tude stations. Nearly all large DSTD jumps (>2 cm) occur at low altitudes (<500 m). High-altitude stations 
also contribute to a narrower scattered DSTD distribution than low-altitude stations, indicating good and 
stable agreements with GPS. However, in areas such as eastern North America, eastern Europe, and Japan, 
some of the low-altitude stations have better agreements with GPS than the high-altitude stations. The 
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correlation slope between the DSTD and elevation ranges from −0.01 to −0.55, corresponding to a decrease 
of the DSTD of 0.01–0.55 cm per 1 km. The global mean correlation coefficients are 0.18 for ERA5 and 0.28 
for HRES, respectively, and the largest correlation coefficient occurs in Central America for ERA5 and in 
South America for HRES. While HRES DSTDs in all regions having a negative slope, except in Japan where 
a limited correlation (0.01) is observed, ERA5 DSTDs exert clear positive slope with the elevation in Eastern 
Europe, Japan, and New Zealand, indicating its relatively poorer agreements with GPS than HRES at high 
altitudes.

It is shown in Figure 6 that, apart from western North America, a majority of GPS stations are installed 
at low altitudes (<1 km). Therefore, to investigate further the elevation dependency of the weather model 
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Figure 5.  Daily PWV DSTD time series between weather models and MODIS from January 2016 to December 2018 for each region defined in Figure 1a1. The 
bottom colored bars indicate the difference between ERA5 and HRES DSTDs (red: HRES < ERA5; blue: HRES > ERA5). The numbers in the bracket of each 
caption show respectively the mean ERA5 DSTD, the mean HRES DSTD, and the percentage of dates when the ERA5 DSTD is larger than the HRES DSTD. (b) 
shows the number of observations in each grid for 3 years. (c) shows the data acquisition time (hours in UTC) of each grid averaged from 3 years of data. DSTD, 
Difference STandard Deviation; HRES, High RESolution; MODIS, Moderate Resolution Imaging Spectrometer; PWV, precipitable water vapor.
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performances especially at high altitudes, we plotted in Figure 7 the PWV DSTD against the elevation per 
MODIS pixel, which provides more high-altitude samples than GPS. A clear PWV DSTD elevation depend-
ency is observed in nearly all regions, with an average slope of −0.06 for ERA5 and −0.05 for HRES, cor-
responding to a decrease of DSTD of 0.06 and 0.05 cm per 1 km, respectively. The largest slope (absolute 
values, the same hereinafter) occurs in Africa where the DSTD drops the fastest as the elevation increases, 
whereas eastern North America has the gentlest slope partly due to its flat topography. There are large dis-
turbances at high altitude pixels in Antarctica (Figure 7a6), and also in some parts of Arctic (Figure 7a5), 
due to the problematic quality of the MODIS PWV over these areas. The global averaged correlation coef-
ficients, excluding Antarctica, are 0.33 between ERA5 and MODIS, and 0.31 between HRES and MODIS.
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Figure 6.  Elevation dependency of DSTDs respectively between ERA5 and GPS ZTDs (red) and between HRES and GPS ZTDs (yellow) using 3 years of data 
from January 2016 to December 2018. The slope is defined in a linear relationship (DSTD = slope × elevation + intercept). Regions are defined in Figure 1a1. 
DSTD, Difference STandard Deviation; GPS, Global Positioning System; HRES, High RESolution; ZTD, Zenith Tropospheric Delay.
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5.2.  Magnitude Dependency

As Sections 5.1 shows that ZTD/PWV DSTDs generally decrease with the elevation, it is necessary to in-
vestigate its dependence on the magnitudes of the ZTD and PWV, given the fact that their magnitudes also 
generally decrease with the elevation. These are showed in Figure 8 using 3 years of data, with the magni-
tude dependency represented as the relative DSTD, defined as the percentage relative to the 3-year mean 
magnitude of the ZTD at a GPS station or PWV at a MODIS pixel. Figure 8a shows that the average relative 
DSTD are 0.44% for ERA5 and 0.43% for HRES, respectively. Forty-three and eight tenths percentage of GPS 
stations have a relative ERA5 DSTD that is below 0.6% compared to 47.8% for HRES DSTDs. Large relative 
DSTD differences between ERA5 and HRES ZTDs occur mostly in the western coast of North America, with 
a global mean difference of 0.02%. Figure 8b shows that the global average relative PWV DSTD, excluding 
Antarctica, are 18.25% for ERA5 and 17.88% for HRES, respectively. 63% of pixels have a relative ERA5 PWV 
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Figure 7.  Elevation dependency of DSTDs respectively between ERA5 and MODIS PWV (red) and between HRES and MODIS PWV (yellow) using 3 years 
of cloud free MODIS data. The slope is defined in a linear relationship (DSTD = slope × elevation + intercept). Regions are defined in Figure 1a1. DSTD, 
Difference STandard Deviation; HRES, High RESolution; MODIS, Moderate Resolution Imaging Spectrometer; PWV, precipitable water vapor.
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DSTD that is below 20% compared to 64.7% for HRES. Large relative PWV DSTD differences between ERA5 
and HRES occur mostly in the south of the Andes, the coast of the Gulf of Guinea and the southeast coast 
of Australia where the relative DSTD differences exceed 3%. Special care should be taken in areas with low 
amounts of water vapor hence low PWV DSTDs. For example, although regions such as the Tibet plateau, 
Andes and Alaska have low PWV DSTDs as shown in Figure 4, their relative PWV DSTD are higher (>35%) 
compared to their surrounding areas, indicating poor agreements with MODIS in terms of the relative accu-
racy. This could be caused by their rough and variated topography. Tables 1 and 2 give the detailed relative 
DSTD for each region.

5.3.  Importance of Temporal Resolution

Figure 3 has shown that the DSTD between HRES and GPS ZTDs in some regions varies at each hour of 
the day, given the fact that the hourly HRES ZTDs were linearly interpolated from the 6 h sampled HRES 
ZTDs. However, these statistics were obtained from averaging all stations so that the effect of the temporal 
interpolation may not be substantially visible. To highlight this effect and the benefit of the high temporal 
resolution of ERA5, we present in Figure 9 the hourly ZTD differences respectively between HRES and GPS 
(red lines), and between ERA5 and GPS (blue lines) during storm Aileen in the United Kingdom from 11 to 
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Figure 8.  Magnitude dependency of DSTDs respectively between ERA5 and GPS ZTDs (a1), between ERA5 and MODIS PWV (b1), between HRES and 
GPS ZTDs (a2) and between HRES and MODIS PWV (b2). (c1) shows the difference between (a1 and a2). (c2) shows the difference between (b1 and b2). 
DSTD, Difference STandard Deviation; GPS, Global Positioning System; HRES, High RESolution; MODIS, Moderate Resolution Imaging Spectrometer; PWV, 
Precipitable water vapor; ZTD, Zenith Tropospheric Delay.
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Region name Number of stations

Mean difference (cm) Mean DSTD (cm) Mean DSTD percentage (%) Slope (cm per km)

ERA5 HRES ERA5 HRES ERA5 HRES ERA5 HRES

Western North America 3,172 −0.01 −0.15 1.25 0.88 0.39 0.35 −0.05 −0.07

Eastern North America 3,629 −0.59 −0.65 1.15 1.21 0.45 0.47 −0.43 −0.55

Central America 267 0.43 0.40 1.97 1.64 0.62 0.59 −0.17 −0.21

South America 685 1.21 1.18 1.64 1.37 0.55 0.51 −0.12 −0.14

Arctic 344 0.8 0.56 1.15 0.95 0.24 0.25 −0.06 −0.09

Antarctica 114 −1.1 −0.78 1.97 1.04 0.26 0.25 −0.22 −0.20

Western Europe 1,300 1.67 1.66 1.19 1.03 0.41 0.41 −0.06 −0.23

Eastern Europe 1,188 1.25 1.35 1.29 0.98 0.39 0.38 −0.06 −0.05

Japan 1,603 1.6 1.59 1.37 1.13 0.49 0.46 0.18 0.01

Southeast Asia 109 1.26 1.14 2.14 1.78 0.57 0.55 −0.19 −0.09

Australia 725 1.16 1.09 1.54 1.53 0.44 0.45 −0.03 −0.10

New Zealand 237 0.81 1.33 1.58 1.19 0.47 0.44 −0.06 −0.14

Africa 274 0.77 1.20 2.06 1.26 0.55 0.5 −0.10 −0.03

Asia 161 −0.04 −0.48 1.85 1.50 0.57 0.54 −0.12 −0.15

Global 13,808 0.46 0.43 1.69 1.54 0.44 0.43 −0.12 −0.19

Abbreviations: GPS, Global Positioning System; ZTD, Zenith Tropospheric Delay.

Table 1 
ZTD Comparison Statistics With Respect to GPS for Each Region Defined in Figure 1a1 and for the Globe

Region name Number of pixels (million)

Mean difference (cm) Mean DSTD (cm) Mean DSTD percentage (%) Slope (cm per km)

ERA5 HRES ERA5 HRES ERA5 HRES ERA5 HRES

Western North America 209.8 −0.15 −0.15 0.21 0.20 24.07 23.71 −0.04 −0.03

Eastern North America 161.0 −0.25 −0.24 0.21 0.21 18.67 18.64 0.00 0.00

Central America 21.9 −0.55 −0.54 0.39 0.36 12.66 12.30 −0.07 −0.07

South America 296.0 −0.58 −0.55 0.35 0.34 12.71 12.42 −0.05 −0.05

Arctic 287.6 −0.07 −0.06 0.19 0.20 30.66 30.37 −0.03 −0.01

Antarcticaa 80.3 0.29 0.30 0.45 0.50 49.07 50.19 −0.02 −0.04

Western Europe 51.6 −0.24 −0.22 0.24 0.22 19.17 18.28 −0.05 −0.04

Eastern Europe 234.5 −0.20 −0.19 0.23 0.22 19.26 19.01 −0.05 −0.06

Japan 48.0 −0.19 −0.18 0.24 0.22 21.73 20.93 −0.06 −0.06

Southeast Asia 21.5 −0.63 −0.61 0.46 0.43 9.08 8.80 −0.06 −0.06

Australia 265.9 −0.56 −0.54 0.32 0.31 16.07 15.57 −0.06 −0.06

New Zealand 5.0 −0.14 −0.12 0.29 0.27 17.96 17.70 −0.04 −0.04

Africa 1,081.4 −0.49 −0.51 0.35 0.34 14.79 14.62 −0.11 −0.10

Asia 596.0 −0.26 −0.26 0.26 0.25 20.46 20.03 −0.04 −0.04

Globalb 3,280.2 −0.33 −0.32 0.34 0.32 18.25 17.88 −0.05 −0.05
aDue to the ice cover deteriorating the quality of the MODIS PWV, the statistics of Antarctica may not reflect the true quality of the weather model. bThe global 
statistics were calculated excluding pixels over Antarctica.
Abbreviations: DSTD, Difference STandard Deviation; MODIS, Moderate Resolution Imaging Spectrometer; PWV, precipitable water vapor.

Table 2 
PWV Comparison Statistics With Respect to MODIS for Each Region Defined in Figure 1a1 and for the Globe
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14 September 2017. Since the GPS ZTD is sampled every 5 min, it is sufficient to capture the ZTD variation 
during the whole process of the storm and is served as the ground truth to validate the two weather models. 
Figure 9b shows that before and after the storm, the two weather models performed similarly. However, 
HRES failed at predicting the ZTD during the storm and performed much poorer than ERA5. The high 
temporal resolution of ERA5 indeed improved its capability of capturing the rapid changing ZTD during 
the storm, with a more stable ZTD difference with GPS than HRES. The HRES ZTD differed from GPS the 
most at 15:00 and 21:00 of 12 September when there is a 3-h time difference against the original HRES ZTD 
samples. It is also noticed that there is a constant ∼2 cm offset between the two weather models and GPS 
ZTDs which is also observed in Figure 1a. The mean DSTD of all stations in Figure 9a for ERA5 during 
the stormy hours from 3:00 12 September to 6:00 13 September is 0.89 cm, compared to 1.20 cm for HRES, 
improving 26% despite ERA5 having a lower spatial resolution than HRES. As a result, one cannot rely on 
the temporal linear interpolation under such extreme weather conditions and it is important to take account 
the time difference into consideration when utilizing these two weather models.

With the proliferation of recent (Sentinel-1) and planned (e.g., GEOSAR and NISAR) InSAR missions hav-
ing wider coverage of potentially up to 1,000 km, the spatial-temporally correlated water vapor effect, which 
increases with distance and may indistinguishable from other long wavelength effects such as the ocean tide 
loading (e.g., Yu et al., 2020) and the solid tide loading (e.g., Xu & Sandwell, 2019), becomes increasingly 
dominant and is now crucial in nationwide or continent-wide deformation mapping and in studies of Gla-
cial Isostatic Adjustment (GIA), inter-seismic tectonic strain accumulation, post-seismic relaxation, slow 
slip events and creeping of fault systems where the weather models play an important role. The compari-
sons in this study may provide guidelines of applying the weather models to such applications and provide 
comprehensive implications to users when deciding which weather model to use at different acquisition 
times and locations.
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Figure 9.  ZTD differences between ERA5 and GPS (blue), and between HRES and GPS (red) during storm Aileen from 11 to 14 September 2017. (c) is the 3 day 
mean DSTD of all the stations displayed in (a). DSTD, Difference STandard Deviation; GPS, Global Positioning System; HRES, High RESolution; ZTD, Zenith 
Tropospheric Delay.
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6.  Conclusions
We have validated the ERA5 and HRES weather models by the GPS ZTD and MODIS PWV, respectively, 
using 3 years of data from January 2016 to December 2018 of every 1 h. The global mean ZTD differences 
with respect to GPS are 0.49 cm for ERA5 and 0.43 cm for HRES, and the global ZTD DSTDs are 1.69 cm 
for ERA5 and 1.54 cm for HRES. The global mean PWV differences with respect to MODIS are −0.32 cm 
for ERA5 and −0.31 cm for HRES, and the global PWV DSTDs are 0.34 cm for ERA5 and 0.32 cm for HRES.

The two weather models generally perform better in regions of western and eastern North America, Europe, 
and Arctic where the mean DSTDs are less than 1.3 cm as revealed by GPS. HRES also has a low DSTD of 
less than 1.3 cm in Antarctic, Japan, New Zealand, and Africa. Although regions such as the Tibet plateau, 
Andes, and Alaska have low PWV DSTDs (<0.2 cm) as shown in Figure 4, the relative PWV DSTD shown 
in Figure 8 are much higher (>35%) than the global average (∼18%). Clear DSTD seasonal variations are 
observed in mid-latitude areas due to seasonal changes in the water vapor compared to Equatorial (all year 
high) and Polar (all year low) regions. Detailed statistics for each region are shown in Tables 1 and 2.

HRES generally performs better than ERA5 revealed by GPS and MODIS, despite the fact that 83% of its 
ZTD and PWV values were temporally interpolated. HRES also has a lower PWV DSTD in the coast of Gulf 
of Guinea, eastern edge of Andes, southeast of China, and southeast of Australia (Figure 4c2). However, 
under extreme weather conditions with sudden changes of ZTDs, as in Section 5.3, ERA5 performs better 
than HRES at epochs that are far from the HRES sampling hours (i.e., 3, 9, 15, 21 o'clock in UTC). One 
should take account both the spatial and temporal resolution into consideration when utilizing the two 
weather models.

The performance of the two weather models with respect to GPS and MODIS are dependent on both the 
elevation and the magnitude of the ZTD or PWV. Comparisons with GPS ZTDs reveal global mean slopes 
(between the DSTD and elevation) of −0.12 for ERA5 and −0.19 for HRES, corresponding to a decrease 
of ZTD DSTD of 0.12 and 0.19 cm per 1 km, respectively. Comparisons with MODIS PWV reveal global 
mean slopes (between the PWV DSTD and elevation) of −0.06 for ERA5 and −0.04 for HRES, correspond-
ing to a decrease of DSTD of 0.06 and 0.04 cm per 1 km, respectively. Depending on the magnitudes, the 
global mean ZTD DSTDs account for 0.44% and 0.43% of the mean ZTD for ERA5 and HRES, respectively, 
and the global mean PWV DSTDs account for 18.25% and 17.88% of the mean PWV for ERA5 and HRES, 
respectively.

Data Availability Statement
The MODIS data and the SRTM DEM used in this paper were obtained from the Land Processes Distrib-
uted Active Archive Centre (LP DAAC). The ASTER GDEM was obtained from NASA Earthdata (https://
search.earthdata.nasa.gov/search). The HRES data was obtained from ECMWF (https://apps.ecmwf.int/
archive-catalogue/?type=an%26class=od%26stream=oper%26expver=1) and the ERA5 data was obtained 
from (https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset). The GPS data was obtained 
from the Nevada Geodetic Laboratory (http://geodesy.unr.edu/gps_timeseries).
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