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A B S T R A C T

Underground mining activities usually induce large surface displacements thus causing serious safety hazards
and potential ecological damage. The capability of conventional Interferometric Synthetic Aperture Radar
(InSAR) to monitor tectonic movements, volcanic eruptions and city subsidence has been fully demonstrated, but
its application to mining subsidence is limited because of the failure caused by localized surface displacements
with strong spatial gradients. In this paper, a new method is presented to utilize SAR pixel Offset Tracking (OT)
with a single pair of SAR images to resolve three-dimensional (3D) large surface displacements caused by un-
derground coal mining. Coal mining subsidence theory is utilised to analytically separate the vertical and
horizontal components. This method is applied to the Daliuta coal mining area in Shaanxi Province, China,
where a dense GPS network is available. Results show the RMS differences of OT derived displacements against
GPS in both horizontal and vertical directions are in the sub-centimeter level. In addition, a prediction of mining-
induced ground movements is performed with the Support Vector Regression algorithm and RMS differences of
12.4, 13.1 and 14.4 cm are observed compared to GPS, in the vertical, easting and northing directions re-
spectively. The framework demonstrated in this paper is not only able to derive the evolution of the 3D large
surface displacements with multi-temporal SAR images in a single-geometry, but also has a potential for short-
term predication, which can provide early warnings and promote strategic decision-making for engineering
management in the process of coal mining.

1. Introduction

Coal provides important energy support for the development of
national economy and it is also one of the non-renewable energy
sources on the Earth. Intense underground coal mining over a large area
leads to serious problems of ground subsidence and potential environ-
mental catastrophe. It was reported that in China the total ground
subsidence area as a result of coal mining exceeded 700,000 ha during
the period from 1949 to 2002, and the consequent economic loss ex-
ceeded 50 billion RMB (equivalent to 7 billon USD) (Li, 2006). On
average, the ground subsidence in North and East China exceeded ap-
proximately 7000 ha per year. To reduce the catastrophe due to coal-
mining-induced ground subsidence, a substantial number of previous
studies have been carried out to monitor, characterise and even predict

mining subsidence (Guo et al., 2014, 2016; Howladar and Hasan, 2014;
Li, 2006; Nie et al., 2015; Salmi et al., 2017; Song et al., 2012; Zhou
et al., 2015). Due to the complexity of mining geology and its three-
dimensional (3D) nature, previous studies on coal-mining-induced
subsidence are primarily based on ground measurements in the field.
Traditional monitoring techniques of coal mining subsidence mainly
consist of triangulation, levelling and GPS. But these methods have
inherent limitations, including point measurements only, large work-
force requirements, and cost inefficiency.

Spaceborne repeat-pass Interferometric Synthetic Aperture Radar
(InSAR) can achieve sub-centimeter precision and measure large areas
(e.g.100 × 100 km2 or even wider) with a horizontal spatial resolution
of 1–10s meters (e.g. Massonnet and Feigl, 1998). One crucial drawback
of InSAR techniques is their incapacity to detect large surface
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displacements with high spatial gradients (Massonnet et al., 1993;
Zebker and Villasenor, 1992). However, coal mining often results in
large surface displacements within a very small range and the gradient
of the surface displacements can go beyond the maximum detectable
deformation gradient of InSAR. Another crucial drawback of InSAR is
their incapacity to derive 3D surface displacements from one single
orbit imaging geometry. Only the displacement in the radar line of sight
(LOS) can be provided by conventional InSAR, which may make in-
terpretation difficult in some cases.

The range offset map from synthetic aperture radar (SAR) pixel
Offset Tracking (OT) contains similar LOS range change information to
a differential interferogram. Compared with interferometric phase
measurements, OT is based on the amplitude information of SAR data
and has relatively lower accuracy, typically on the order of 1/20 pixel
(Casu et al., 2011). However, OT has the advantages of less vulner-
ability to temporal and spatial decorrelation effects, greater capacity to
measure large deformation and easier access to two-dimensional sur-
face displacements (Michel et al., 1999). OT has been successfully ap-
plied to the monitoring of ground motion caused by glaciers, earth-
quakes, volcanoes, and landslides (Sánchez-Gámez and Navarro, 2017;
Li et al., 2011; Singleton et al., 2014). As for deformation monitoring of
mining areas, Zhao et al. (2013) was the first to use OT to monitor
mining subsidence with a precision of about 1/25 pixel (about 0.2 m).
Huang et al. (2016) used OT to map the surface displacements in the
mining areas in Daliuta, Shaanxi Province, China. Most previous re-
search efforts using OT to monitor mining subsidence focused on ver-
tical displacements and neglected horizontal movements. There have
been limited previous studies working on 3D large mining subsidence.
Fan et al. (2015) estimated the extent of 3D surface displacements in
the Daliuta mining area by combining OT with a probability integral
model (PIM). However, the vertical displacements were retrieved under
the assumption that there was no horizontal movement; in addition,
they only considered the total ground movements after the coal ex-
ploitation finished. Mining subsidence is actually a complex process
that evolves in space and time, and it would be optimal to monitor 3D
ground displacements and their evolution in time. For a given geology
and mining condition, the maximum possible ground subsidence value
may occur after the coal exploitation, which is generally located in the
centre of subsidence basin. If the size of working panel continues to
increase even after the occurrence of the maximum possible value, the
width and length of the ground subsidence would increase but the
maximum possible subsidence value at the subsidence basin centre
would remain unchanged, resulting in a flat bottom at the ground
subsidence basin centre and suggesting limited (if any) horizontal
movements; this is often defined as supercritical subsidence (e.g.
Reddish and Whittaker, 2012). However, the buildings within the su-
percritical subsidence area can still suffer from deformation or damage
because every point in the area is affected when the working panel is
advancing. Although such dynamic movement is temporary, it can still
lead to damage to buildings. Therefore, it is important to investigate the
evolution of dynamic ground movements, assisting in identification of
buildings which are influenced by mining activities, and how they
evolve at different stages during mining; thus proper protection stra-
tegies can be applied to minimise the negative impacts.

Yang et al. (2018) proposed to use OT with the assistance of a prior
deformation model to derive 3D displacement time-series in a coal
mining area. However, 3D surface displacement time-series cannot be
fully retrieved using this method for the following reasons. Firstly, the
horizontal movements were assumed to be proportional to the tilts, but
that assumption does not always hold true (Barbato et al., 2016; He,
1985; He and Ma, 1985; Wu et al., 1998). Secondly, it was assumed that
the deformation was linear between two time-adjacent SAR acquisi-
tions, thereby allowing the retrieval of three-dimensional displace-
ments (i.e. vertical, easting, and northing). That assumption is not ap-
plicable for coal mining subsidence, as characteristic features of large
deformation caused by coal mining can exhibit spatial discontinuity

and temporal non-linearity; Thirdly, the model parameters, including
the tangent of the major influential angle and the coefficient of hor-
izontal movements, were considered to be constants in the modelling
process, but these parameters should not be fixed when taking into
account the nature of the actual movements.

A novel method is presented in this paper to obtain 3D large surface
displacements and their evolution in time for coal mining, using mul-
tiple SAR images from a single imaging geometry. A distinctive ad-
vantage of this new approach is that large 3D ground movements can be
accurately resolved from two SAR amplitude images in an identical
imaging geometry, i.e. both in ascending orbits and in descending or-
bits. In this paper, we also attempt to investigate the feasibility to
predict mining-induced ground movements using the 3D surface dis-
placements derived from SAR images with a single imaging geometry.

2. Methodology

Different underground mining methods are adopted to extract dif-
ferent minerals under different geological mining conditions. Longwall
mining is one of the most commonly used methods, which is a form of
underground mining where a long face or wall of minerals is mined in a
single slice. Longwall mining is often employed to extract large rec-
tangular blocks of coal, which can be formed using a coal mining ma-
chine. The principal idea of longwall mining is to use the support
equipment to provide a safe working space for the miners in the mining
direction while all the coal seams in the working panel are extracted,
and then the supports are removed to allow the roof and overlying rock
to collapse into the void behind.

2.1. Correlation analysis between surface displacements and tilt caused by
coal mining

The Stochastic Medium Theory Model (SMTM) is the most com-
monly used method for predicting the ground movements induced by
coal mining activities (Litwiniszyn, 1974). It assumes that the rock mass
can be moved from one location to another and its shape can vary under
unit element mining, however its total volume remains the same, i.e.,
the sum of the normal strains in the x, y, and z directions (i.e., εx, εy, and
εz, respectively) is equal to zero:

+ + = 0x y z (1)

The relationship between the tilt and horizontal displacement can
be deduced based on Eq. (1):

=U x y b H I x y( , ) ( /tan ) ( , )e e (2)

where Ie(x,y) and Ue(x,y) represent the tilt and the horizontal ground
movement caused by exploiting the unit element considered, respec-
tively. b, H and tanβ represent the coefficient of the horizontal move-
ment, the mining depth of the extracted unit element, and the tangent
of the major influential angle, respectively. However, it has been
proved in many engineering applications that the proportional re-
lationship indicated in Eq. (2) is only valid in a limited number of cases
due to the fact that the main assumption of SMTM is inconsistent with
the actual movement of rock mass. SMTM assumes that the total vo-
lume of overburden rock mass remains unchanged under coal mining,
but the actual rock mass is anisotropic and discontinuous (with cracks),
and its volume varies due to the bulk expansion and rheology of the
rock mass during mining, i.e. the rock mass should be considered as a
clastic medium. Therefore, the sum of the normal strains in the x, y, and
z directions is not equal to zero: in the x-z plane, this relationship can be
expressed as follows:

+ = e x z( , ) 0x z (3)

where e(x,z) is the function of the volume change of the rock mass
related to the internal point (x, z) of the rock mass. εx and εz can be
expressed as (Litwiniszyn, 1974):
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where We(x, z) is the vertical ground subsidence caused by exploiting
one unit element. Substituting Eq. (4) into Eq. (3), we have

+ =U x z
x

W x z
z

e x z( , ) ( , ) ( , )e e
(5)

The ground horizontal movement Ue(x, z) caused by exploiting one
unit element can be determined by integrating Eq. (5)

= +U x z e x z dx W x z
z

dx( , ) ( , ) ( , )
e

x x e
(6)

Considering Eqs. (2), (6) can be expressed as

= +U x z B I x z F x z( , ) ( , ) ( , )e e (7)

where B and F(x, z) can be written as

=

=

B b H

F x z e x z dx

tan

( , ) ( , )
x

(8)

and F(x, z) is a function related to the rock deformation. To make the
calculation easier, based on the measured results of surface-based ob-
serving station, F(x, z) can be assumed as a linear function (Lian et al.,
1994)

=F x z W x z( , ) cot ( , )e (9)

where θ is the propagation angle of the coal mine, i.e. the angle be-
tween the horizontal and the line passing through the maximum sub-
sidence point and the center of extraction (see Fig. 1(b)). Therefore, the
horizontal ground movement caused by exploiting unit element can be
expressed as

= +U x z B I x z W x z( , ) ( , ) cot ( , )e e e (10)

Eq. (10) indicates that the surface displacement in the x direction
caused by coal mining is not proportional to the tilt, but as the result of
the superposition of the tilt and the vertical movement. The similar
expression can also be deduced using the proposed theory in the y–z
plane.

2.2. Modelling three-dimensional surface displacements of coal mining in
time

As shown in Fig. 1(c), we take xOy as the local coordinate system on
the Earth's surface and sO1d as the coal mining coordinate system. As-
suming that the unit element B (s, d) is exploited at time t, We(x, y) is
the corresponding vertical displacement of the surface point A(x, y)
caused by the unit element B(s, d) and the vertical displacementW(x, y,
t) of point A(x, y) at time t can be written as

=W x y t W x y t( , , ) ( , ) ( )e (11)

where ψ(t) is a time influence function. According to Knothe's theory
(Knothe, 1952), We(x, y) and ψ (t) can be expressed as

= +

=

W x y r x s y d r

t e

( , ) 1/ exp (( ) ( ) )

( ) 1

e

ct

2 2 2
2

(12)

where r is the major influence radius of the mining unit element B(s, d),
r = H/tanβ as shown in Fig. 1(a). c is the coefficient of subsidence
velocity and can be determined as

=c v H2 tan / (13)

where v is the mining velocity, i.e. the excavation distance of working
panel per day, and is often considered as a constant for a given mine.
Based on Eqs. (11), (12) and (13), the vertical displacementW(x, y, t) of
point A(x, y) caused by the unit element B(s, d) at time t can be esti-
mated precisely. Then the total vertical displacement of ground point
A(x, y) caused by the whole underground working zone at time t can be
determined with the integral method, i.e. to divide the working panel
into several unit elements, calculate the ground movement caused by
each unit element according to Eq. (11) and then sum up all the ground
movements of each unit element to obtain the total ground movement
of the entire mined working panel. Thus the vertical displacement
Wa(x, y, t) of point A(x, y) caused by the whole working panel can be
expressed as

= =
= =

W x y t W x y t W x y e( , , ) ( , , ) ( , ) (1 )a
i

p

i

p

e
v t H

1 1

2 tan /

(14)

where p is the number of unit elements and can be determined using Eq.
(15) (Wu, 1995)

Fig. 1. (a) The geometric explanation of parameters r and β.W(x) is the subsidence curve under semi-infinite mining condition, i.e. when time t→∞ and in x > 0,
all the coal seam is exploited and in x < 0, the unmined coal seam remains. Surface deformation is mainly concentrated in the range of 2r above the mining
boundary, this is the origin of parameter r; β is the angle between the horizontal and the line connecting the boundary point of the major influence range (i.e. –r or r)
and the mining boundary point. (b) Plane-coordinate system for coal mining. (c) Local coordinate systems for coal mining. Note that (i) parameters r, β, and H
represent the major influence radius, major influence angle and mining depth. (ii) We represents the vertical displacement caused by exploiting one unit element,
parameters θ and α represent the propagation angle of the coal mine and coal seam inclination, respectively. (iii) B(s, d) represents one unit element, A(x, y)
represents one surface point influenced by exploiting unit element B(s, d), D1 and D2 are the extraction length and width of the working panel, respectively.
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where D1 and D2 represent the extraction length and width of working
panel, respectively. As the tilt is the first spatial derivative of the ver-
tical displacement (Litwiniszyn, 1974), the corresponding tilts (IEW(x, y,
t) and INS(x, y, t)) of point A(x, y) in the easting and northing directions
at time t can be expressed as

= +
= +

I x y t W x y t W x y t y
I x y t W x y t W x y t x

( , , ) [ ( , 1, ) ( , , )]/
( , , ) [ ( 1, , ) ( , , )]/

NS a a

EW a a (16)

where Δx and Δy are the distance intervals of adjacent points in the
easting and northing directions, respectively. The corresponding hor-
izontal movements (UEW(x, y, t) and UNS(x, y, t)) of point A(x, y) in the
easting and northing directions at time t can be determined using Eq.
(10).

= +
= +

U x y t b H I x y t W x y t
U x y t b H I x y t W x y t

( , , ) ( /tan ) ( , , ) cot ( , , )
( , , ) ( /tan ) ( , , ) cot ( , , )

NS NS a

EW EW a (17)

In Eqs. (14), (15), (16) and (17), parameters v, H, D1, D2, Δx, Δy are
all constants over a continuous coal mining area. Parameters tanβ, θ
and b are the variables over time. Therefore, 3D surface displacements
can be derived when parameters tanβ, θ and b are known. This offers a
great opportunity to retrieve 3D deformation from SAR images with a
single imaging geometry.

2.3. Estimating model parameters using time-varying OT results

It is clear from Section 2.2 that 3D time-varying movements can be
retrieved when parameters tanβ, θ and b are known. Here a method is
proposed to determine the dynamic parameters tanβ, θ and b using
time-varying OT results. To obtain time-varying OT results, multiple
SAR images (assuming m images in total) are first paired to form n
pairs, and the range displacements R= [r1, r2, …, rn]T are computed for
all the SAR pairs using OT. The following equation is constructed to
obtain the time-varying displacements

=BX R (18)

where X = [x1, x2, …, xm-1]T are the time-varying surface displace-
ments in the LOS direction that needs to be solved, and B is a coefficient
matrix with a dimension of n × (m-1). As n ≥ m-1 and the rank of B is
m-1, Eq. (18) can be solved using the least squares (LS) method

=X B B B R( )T T1 (19)

An iteration method is used to estimate parameters tanβ, θ and b as
follows:

Step 1. To determine the initial vertical displacements with an as-
sumption of no horizontal movement at time t. The vertical displace-
ment of an arbitrary pixel (i, j) at time t can be determined as:

=W i j t LOS i j t i j( , , ) ( , , )/cos( ( , )) (20)

where ϕ is the radar incidence angle, W(i, j, t) is the vertical displace-
ment of pixel (i, j) at time t and LOS(i, j, t) is the OT derived range
displacement of pixel (i, j) at time t.

Step 2. To estimate parameters tanβ, θ and b using the Genetic
Algorithm Optimization Toolbox (GAOT) developed at North Carolina
State University. The basic idea of Genetic Algorithm (GA) is to select
the “chromosomes” that are more suitable for the environment to
generate a new offspring. After many times of evolution, they finally
converge and acquire a “chromosome” that best fits the environment
and this population is the optimal solution to the problem (Holland,
1975). The value range of each parameter is firstly assigned according
to the specific geology and mining conditions. Then the initial para-
meter population is generated by ordering the parameters into chro-
mosome strings in which each gene represents one parameter, i.e. tanβ,

θ and b. GA is then used to generate a new generation of chromosome
groups that are more adaptable to the environment. The chromosome
groups are evolved from generation to generation and finally the ones
that best adapt to the environment, i.e. the prediction results with the
smallest variances (here compared with GPS measurements) are chosen
as the final parameters.

Step 3. To estimate the initial 3D surface displacements. Based on
the parameters obtained in Step 2, 3D displacements can be estimated
using Eqs. (14), (16) and (17).

Step 4. To simulate the range displacements based on the 3D model
in Step 3. The simulated range displacement LOS′(i, j, t) can be obtained
using the following equation

=
+

LOS i j t W i j t i j i j
U i j t

U i j t

( , , ) ( , , ) cos( ( , )) sin( ( , ))
[ ( , , ) cos( 3 /2)

( , , ) sin( 3 /2)]
NS

EW (21)

where δ is the radar heading angle, UNS(i, j, t) and UEW(i, j, t) are the
horizontal displacements of pixel (i, j) in the northing and easting di-
rections respectively, at time t. Then the absolute residual ΔLOS
(i, j, t) = |LOS′(i, j, t) − LOS (i, j, t)| is generated.

Step 5. To compare the absolute residual with a given threshold ε,
here set as 10 mm. (i) If ΔLOS(i, j, t) ≤ ε, output the parameters tanβ, θ
and b and the time-varying 3D displacements from Eqs. (14), (16) and
(17). (ii) If ΔLOS(i, j, t) > ε, then correct the original LOS displace-
ment, i.e. LOS″(i, j, t) = LOS(i, j, t) + ΔLOS(i, j, t), where LOS″(i, j, t) is
the corrected LOS displacement of pixel (i, j) at time t and will be used
to calculate the vertical displacement in Step 1.

Step 6. To repeat Steps 1 to 5 until the absolute residual ΔLOS(i, j, t)
is within the given threshold ε, and output the parameters tanβ, θ and b
and the time-varying 3D displacements from Eqs. (14), (16) and (17).

Since the 3D time-varying large surface displacements are derived
from OT measurements and clastic medium theory (CMT), hereafter
this method is referred as OT-CMT. The flow chart of OT-CMT is shown
in Fig. 2.

3. Case study

3.1. Study area and data used in this study

The study area is located in the Daliuta coal mining area, Shaanxi
Province, China. With thick loose layers, shallow coal seams, thin
bedrock, a small mining depth to mining thickness ratio, and fast ad-
vancement of the working panel, this region is characterized by large
ground movements. Ground movement due to coal mining has unique
features, including the fast propagation of coal mining influences, dis-
continuous surface displacements, and a large probability of cata-
strophes such as stepped collapses, hillside slip and landslides. A single
reference real-time kinematic (RTK) GPS was used to collect the co-
ordinates of 71 ground stations along the strike (direction of the line
formed by the intersection of coal seam with a horizontal plane) and dip
(direction of the line formed by the intersection of coal seam with a
vertical plane perpendicular to the strike of the feature) directions on
the coal mine working panel (Fig. 3). The green circles in Fig. 3 re-
present the 45 GPS stations along the strike direction with a station
spacing of 20 m, and the 26 GPS stations along the dip direction with a
station spacing of 25 m, 71 GPS monitoring points in total. GPS results
show the maximum subsidence of about 4.4 m in the study area during
the period from November 2012 to April 2013. Such large surface
displacements make it a big challenge to use InSAR in this case.

The working panel in the study area has a length of approximately
4547 m and a width of approximately 300 m, with an average mining
depth of about 235 m and a coal seam inclination of approximately 1° to
3°. Most of the ground surface is covered by Quaternary unconsolidated
sediments with an average thickness of 30 m. The overlying bedrock
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primarily consists of siltstones and fine sandstones, with an average
depth of about 200 m. Coal mining started on November 1, 2012 and
terminated on March 25, 2013 along the southeast-northwest direction.

Chen and Deng (2014) used conventional InSAR to obtain LOS
surface displacements in the same site, and they applied interpolation
to the central deforming area where large surface displacements were

Fig. 3. The study area with the coal mine working
panels. Note that green circles represent the GPS
stations, blue polygons represent the working panels,
and the white arrow represents the mining direction.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 2. The flow chart of the OT-CMT method.
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evident. Fan et al. (2015) collected 3D large ground movements at
Daliuta mining area using OT and PIM. However, in their analysis they
assumed that there was no horizontal movement, which did not hold
true; moreover, it only managed to estimate the total surface dis-
placements but failed to recover the evolution of the ground motion
during the whole coal mining period. Yang et al. (2018) proposed to use
OT with PIM to derive the time-series of 3D surface displacements in
the Daliuta coal mining area. However, as mentioned in Section 1, their
assumed model might not be consistent with the actual ground motion.
Therefore, we attempt to use SAR data to further investigate the evo-
lution of the surface displacements of Daliuta coal mining area in this
study. As shown in Table 1, 13 scenes of high resolution Spotlight
TerraSAR-X images with an azimuth pixel spacing of 0.85 m and a
range pixel spacing of 0.91 m were used to extract surface displace-
ments. These images were acquired during the period from November
21, 2012 to April 2, 2013, which spanned the same period as the actual
mining activity.

3.2. 3D surface displacements in time

3.2.1. OT-CMT results
OT-CMT was employed to obtain the dynamic 3D surface

displacements in the study area. First, a common master image (for this
study 2013/02/06) was selected according to the Doppler central fre-
quencies and the spatial and temporal baselines (Table 1), and the re-
maining images were registered to the master image. To remove the
topographic phase contributions, the 1-arcsecond (~30 m) spacing
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM) was used (Farr et al., 2007; NASA, 2015). To ensure good co-
herence, the temporal baseline threshold was set to 22 days, and 23
pairs (Fig. 4) were processed to generate range displacement maps with
the OT technique. To maximize the correlation values while taking into
account the computation efficiency, the search window in the OT
computation process was set to 64 × 64 pixels and the oversampling
factor was set to 2. The time-varying range displacements were gen-
erated via Eq. (19). Note that the azimuth offsets were also calculated
but they were seriously affected by ionospheric disturbance; therefore
the azimuth offsets were not used in further analysis in this study. Fi-
nally, the 3D displacement model was constructed using the OT-CMT
approach introduced in Section 2.2. Here the radar incidence angle ϕ is
42.43° and the heading angle α is 189.53° for TerraSAR-X. Parameters b,
tanβ and θ were obtained via the GA method with 50 populations and
200 generations. To eliminate the influence of the random errors caused
by the GA method, all the parameters were optimized by GA in-
dependently 200 times at each time interval, and the corresponding
average (AVG) values were accepted as the final values. The statistical
distributions of parameters tanβ, b and θ and corresponding AVG and
standard error (STD) are illustrated in Fig. 5(a)–(c), which show ap-
proximately normal distributions and demonstrate the rationale to take
the mean values. Fig. 5(d)–(f) show the temporal variations of para-
meters tanβ, b and θ, respectively, illustrating that all the parameters
are in a dynamic state over time.

Fig. 6(a) illustrates the maximum vertical surface displacement of
approximately 4.5 m during the period from November 21, 2012 to
April 2, 2013. The ground movements accumulated gradually from the
southeast to northwest which is consistent with the exploiting direction
of the mine workings, with a transformation from a bowl shape (in
plain view) into an elliptical area of displacement. Fig. 6(b) and (c)
show that the maximum horizontal movements of approximately 1.4 m
and 1.2 m in the northing and easting directions during the period from
November 21, 2012 to April 2, 2013, respectively. In Fig. 6(c), three
distinct areas moved towards the East and one area moved towards the
West in the working panel. A comparison between Fig. 6(b) and (c)
show that the maximum horizontal movement in the northing direction
is greater than that in the easting direction and the horizontal move-
ments in the northing direction is nearly symmetric. In addition,
Fig. 6(b) and (c) show that the horizontal displacements towards the
subsidence centre have negligible displacement and the maximum
horizontal movement occurred at the edges of the mining area and
diminished towards the outer space.

To further analyse the evolution of ground movement, the time-
varying vertical and horizontal surface displacement profiles along AA′
and BB′ are shown in Fig. 5. Fig. 5(g) and (h) suggest that the horizontal
movement curves for Profile AA′ fluctuate considerably in different
periods with a maximum negative movement of −665.0 mm and a
maximum positive movement of +615.0 mm. Fig. 5(i) shows that with
the exploiting of the working panel, ground subsidence along profile
AA’ increases dramatically, which results in the rapid formation of a
collapsed basin. From November 21, 2012 to January 4, 2013, the
ground subsided dramatically and reached 2.569 m, accounting for
58.4% of the final maximum ground subsidence of 4.43 m.

Compared to the fluctuant pattern of horizontal movement curves
for Profile AA′, the horizontal surface displacement curves for Profile
BB′ (Fig. 5(j) and (k)) formed two symmetric regions: negative move-
ment with a maximum of −676.0 mm and positive movement with a
maximum of +704.0 mm. Compared to the characteristics of ground

Table 1
TerraSAR-X images used in this study.

Acquisition date Perpendicular
baseline (m)

Temporal
baseline (days)

Doppler central
frequency (HZ)

2012/11/21 −34.10 77 2885
2012/12/02 −171.73 66 2892
2012/12/13 −149.38 55 2914
2012/12/24 −51.92 44 2897
2013/01/04 8.70 33 2921
2013/01/15 82.91 22 2820
2013/01/26 20.28 11 3024
2013/02/06 0 0 3310
2013/02/17 −117.89 11 3359
2013/02/28 −26.06 22 3265
2013/03/11 51.97 33 3334
2013/03/22 116.73 44 3306
2013/04/02 −38.41 55 3341

Fig. 4. Spatial and temporal baselines of the selected TerraSAR-X pairs.
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subsidence along profile AA′, ground subsidence curves along Profile
BB′ (Fig. 5(l)) showed a different pattern, which increased slightly
during the period from November 21, 2012 to January 4, 2013 and
increased dramatically by 2.056 m, accounting for 49.5% of the final
maximum ground subsidence (the maximum subsidence was 4.157 m)

during the period from January 4, 2013 to January 26.

3.2.2. Validation
To evaluate the OT-CMT results, 852 GPS measurements over the 71

monitoring stations (Fig. 3) collected in 12 RTK GPS campaigns during

Fig. 5. (a)–(c) are the statistical distributions of parameters tanβ, b and θ between November 21, 2012 and April 2, 2013, respectively. (d)–(f) are the temporal
variations of parameters tanβ, b and θ, respectively. Note that parameters tanβ and b are dimensionless and parameter θ is in degrees. (g)–(i) are the time-varying
northing, easting and vertical surface displacements along Profile AA′, respectively. (j)–(l) are the time-varying northing, easting and vertical surface displacements
along Profile BB′, respectively.
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the period from 21 November 2012 to 2 April 2013 were used as “the
truth” with precision of about 1 cm in the easting and northing direc-
tions and 2 cm in the vertical direction. The corresponding spatial-
temporal root-mean-square errors (RMSEs), spatial RMSEs and tem-
poral RMSEs of the OT-CMT results were calculated (Fig. 7). The RMSEs
in the vertical direction are the smallest, i.e.7.4, 7.2 and 7.3 cm in the
spatial-temporal, spatial and temporal comparisons, respectively; the
RMSEs in the easting direction are the second smallest, i.e. 8.3, 8.1 and
8.2 cm; and the RMSEs in the northing direction are the largest, i.e. 9.3,
9.1 and 9.2 cm. The relative RMSEs against the maximum GPS mea-
surements are 1.7%, 13.2% and 13.5% in the vertical (about 4.43 m),
northing (about 0.704 m) and easting (about 0.615 m) directions, re-
spectively. Such accuracy can satisfy the practical and legal require-
ments of the coal mining industry (State Bureau of Coal Industry,
2000). Yang et al. (2018) proposed to combine OT with PIM to derive

3D surface displacement time-series in the Daliuta coal mining area and
they reported that RMSEs of 11 cm and 22 cm in the horizontal and
vertical directions, respectively. Note that, for the convenience of
comparison with this previous study, here the horizontal movements
are obtained by synthesizing the movements in the northing and easting
directions and a 7.7 cm RMSE of the retrieved horizontal displacements
against GPS was obtained. Compared with Yang et al. (2018), the
performance of our OT-CMT approach has improved accuracy about
30% and 58% in horizontal and vertical directions, respectively.

3.3. Prediction of mining-induced ground movements

The stress changes in the rock stratum can lead to ground move-
ments, which is a complex process and can evolve in space and time.
Prediction models of surface displacements are desirable to predict

Fig. 6. (a)–(c) are the accumulative surface displacements in the vertical, northing and easting directions, respectively. Note that (i) positive vertical displacements
represent ground subsidence and negative displacements represent ground uplifts; (ii) positive horizontal displacements represent the Earth's surface moved towards
the northing and easting direction, respectively; and (iii) only 5 out of 12 cumulative deformation maps are shown in the vertical, northing and easting directions,
respectively.

Fig. 7. (a1)-(a3) are the spatial-temporal comparisons between OT-CMT and GPS surface displacements. (b1)-(b3) are the spatial comparisons between OT-CMT and
GPS surface displacements. (c1)-(c3) are the temporal comparisons between OT-CMT and GPS surface displacements. Note that (i) the time span is from 21 November
2012 to 2 April 2013, in which 12 RTK GPS campaigned were carried out with a time interval of 11 days (corresponding to TerraSAR-X acquisitions, Table 1) and
therefore the total number of GPS measurements is 71 × 12 = 852; and (ii) all the comparisons were performed in the northing, easting and vertical directions,
respectively.
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future mining-induced ground movements, and hence reduce the
probability and loss of disaster occurrence.

In this study the Support Vector Regression (SVR) algorithm
(Burges, 1998; Smola and Schölkopf, 2004) was employed to describe
the nonlinear relationship between the measured and future surface
displacements. The OT-CMT results can be considered as many groups
of time-related discrete data, and can be used to constitute a nonlinear
time series {xi} = {x1,x2, ... xn}, where n is the number of the mea-
sured surface displacements (Chen and Deng, 2014).

To predict the surface displacement xi+p at time point i+ p, one must
find a function xi+p = f(xi, xi+1, …, xi+p-1) to describe the relationship
between xi+p and the previous p measured displacements, where i = 1,2,
…, n-p, and p represents the size of the input vector. The nonlinear time
series can then be transformed to the following two matrices:

= =
+

+

+

+

x
x

x

x
x

x

x
x

x
Y

x
x

x
X ,

n p n p

p

p
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2
3

1

1

1

1
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(22)

We used matrices X and Y as the training and learning samples to
establish the SVR function Y= f(x), which can be expressed as follows:

= + = +
=

f x a a K x x b t p n( ) ( ) ( ) , 1, ... .t
i

n p

i i i t
1 (23)

where K(·) represents the kernel function, ai and ai⁎ are the Lagrangian
multipliers, and b is a constant. For greater details of the SVR approach,
please refer to Chen and Deng (2014).

Since the surface deformation caused by underground coal mining is
a complex space-time evolution process, it is expected that the function

Fig. 8. (a1)-(a3) are the time series of the predicted displacements by SVR. The legends ‘110 days’, ‘121 days’ and ‘132 days’ refer to the start date of 21 November
2012. (b1)-(b3) are the spatial-temporal comparisons between the predicted and OT-CMT displacements. (c1)-(c3) are the spatial-temporal comparisons between
predicted and GPS displacements. Note that all the comparisons results are performed in the northing, easting and vertical directions, respectively. The line of perfect
fit (solid line) and a least squares regression line (dashed line) are plotted. The number of the test samples is 213 during the period from 11 March 2013 to 2 April
2013.
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itself should have the ability to update the samples to adjust the pre-
dicted value in real time. But the SVR algorithm itself is a static pre-
diction, and the predicted value cannot be dynamically adjusted ac-
cording to the changing conditions. In order to make full use of the
latest displacement information to improve the prediction performance,
we employed a rolling prediction method (Chen and Deng, 2014) to
update the training sample data and thus constitute a dynamic pre-
diction model. Here the monitoring data of ground observations ob-
tained by OT-CMT along Profiles AA′ and BB′ were selected for vali-
dation purposes, i.e. 45 points along the strike direction and 26 points
along the dip direction (see the ground observations in Fig. 3). We used
the measured data from 21 November 2012 to 28 February 2013 (nine
groups) as the training and learning samples for SVR and took the
measured data from 11 March to 2 April 2013 as the test samples to
assess the performance of the prediction model.

As demonstrated in Chen and Deng (2014), the optimal parameters
can be selected according to the final prediction residuals. In this study,
the size of the input vector was set to 4 and the step size of the pre-
diction was set to 1 (i.e. 11 days) to establish the prediction function f
(·). Based on the prediction function with optimal parameters, the
rolling prediction method was used to predict the surface displacements
step-by-step and their predicted results are shown in Fig. 8(a1)-(a3),
respectively. Fig. 8(a1)-(a3) show that the shapes of all the predicted
time series are similar to Fig. 5 and also the maximum displacement
values are consistent with the OT-CMT results in the northing, easting
and vertical directions, respectively.

Fig. 8(b1)-(b3) show that there are high correlations between the
predicted and the OT-CMT displacements with RMSEs ranging from 3.9
to 4.2 cm in the three directions, demonstrating the robustness of the
rolling prediction method. Fig. 8(c1)-(c3) illustrate that the correlations
are smaller and the RMSEs are greater than those in Fig. 8(b1)-(b3); the
corresponding RMSEs are 14.4, 13.1 and 12.4 cm in the northing,
easting and vertical directions, respectively. The reason for the lower
correlations and larger RMSEs in Fig. 8(c1)-(c3) can be explained as the
error propagation caused by the OT-CMT results. The predicted results
can provide risk warnings and promote strategic decision-making for
engineering management in the process of coal mining.

4. Conclusions

Coal mining often leads to large surface displacements with high
spatial gradients, which is beyond the detection ability of traditional
InSAR. Surface displacements caused by underground coal mining
occur in both the horizontal and vertical directions, but traditional
InSAR only provides observations in the radar line of sight. In this
paper, a new approach has been demonstrated to extract 3D surface
displacements, caused by underground coal mining, through the com-
bination of SAR pixel offset tracking technique with coal mining sub-
sidence theory. There are several obvious advantages of the OT-CMT
approach: (i) surface displacements with large spatial gradients can be
obtained; (ii) SAR images with a single imaging geometry only are re-
quired; and (iii) the evolution of 3D surface displacements can be de-
termined.

In addition, the SVR algorithm is employed to develop an early
prediction model. The framework demonstrated in this paper is not only
able to derive the evolution of the 3D large surface displacements with
multi-temporal SAR images with a single imaging geometry, but also to
provide risk warnings and promote strategic decision-making for en-
gineering management in the process of coal mining.

This study has considered one mining subsidence area in a specific
type of geology and mining method. Mining subsidence with different
topography, different mining depth and coal seam inclination may
present different movement behaviours and require different forms of
analysis. Thus, application of the proposed method to more mining
subsidence cases (including different topography, different mining
depth and coal seam inclination, etc.) with different SAR geometries

should be the focus of future studies. Coal mining subsidence is a
complex temporal-spatial process and in this case study an exponential
function model was employed which might not perform well for dif-
ferent types of surface deformation process. So future work should also
focus on the improvement of the assumed time-related function of coal
mining.
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